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AbstrAct—The Lucero uplift lies along the western part of the Colorado Plateau and bounds the northwestern edge of the Albuquerque 
Basin. It preserves a rich geologic history involving a well-exposed upper Paleozoic stratigraphic section and multiple deformational, 
magmatic, and denudational events. The purpose of this paper is to synthesize EDMAP and STATEMAP mapping and research efforts 
to highlight developments in our understanding of this region by focusing on two main research locations: Carrizo Arroyo and the Belen 
travertine quarries owned and operated by New Mexico Travertine, Inc. The Cenozoic deformational history of this part of the western 
edge of the Rio Grande rift involved the following elements from west to east: (1) Lucero uplift of the eastern Colorado Plateau is a wide 
region of gently west-dipping (< 10°), undeformed Permian and Triassic rock, (2) the Comanche fault zone is a west-side-up contractional 
fault zone that developed from approximately east-west compression during the Laramide orogeny, (3) the Comanche deformation domain 
(~500-m-wide) is made up of steeply-dipping Paleozoic and Mesozoic strata (the steep limb of the Comanche monocline), (4) newly-dated 
27.5 Ma igneous intrusions cross-cut steeply dipping beds, (5) low-angle normal faults preserved in the deformation domain are early, ro-
tated rift normal faults, (6) the Santa Fe normal fault forms the eastern side of the Comanche deformation domain and the western boundary 
of the Rio Grande rift; it cross cuts and down-drops the synclinal hinge of the monocline deep into the rift, (8) the Comanche deformation 
domain was a zone of fluid flux of deeply-sourced fluids that mixed with meteoric recharge and resulted in travertine mounds and platforms 
that were deposited by carbonic, saline springs and resulted in world-class travertine deposits in the Belen quarry area, (9) the 3.7 Ma Mesa 
Carrizo basalt erupted from vents on the Colorado Plateau and flowed southeast across a low relief surface (Ortiz surface) at a time when 
there was little relief on the western rift flank, (10) the Belen travertine quarries consist of several Quaternary travertine platforms that are 
cut by multiple sets of rift-parallel and rift-perpendicular extensional calcite veins that show strain rates over the last 2 Ma that are one to two 
orders of magnitude higher than present-day strain rates measured from GPS, and (11) Carrizo Arroyo, itself, is a spectacular 183-m deep 
canyon tributary to the Rio Puerco that has been incised at a rate of 50 m/Ma over the last 1 Ma due to river system integration, climate, or 
base level lowering in the Rio Grande. 
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 HISTORICAL BACKGROUND

As summarized in Duschatko’s (1953) Atomic Energy 
Commission Report, the Lucero Mesa area was first mapped 
by Darton (1928), who recognized a subvertical fault system 
that separates undeformed Paleozoic and Mesozoic strata on 
the west from the Rio Grande rift valley to the east. Kelley 
and Wood (1946) recognized the deformation zone to include 
faults of likely different age, the presence of low-angle faults 
that they interpreted to be Laramide thrust faults, and the like-
lihood of fault reactivation. Wright (1946) mapped the Carrizo 
Arroyo area at 1:12,000 but focused on the Tertiary geology 
and omitted most of the structural complexities. Duschatko 
(1953) mapped structures in great detail and highlighted the 
narrow N-S deformation zone of complex faulting and jointing 
that he interpreted to be due to multiple movements. His de-
scription below is similar to our interpretation except that we 
interpret the Laramide monocline to be the result of west-side-
up (not east-side-up) reverse fault displacement. His summary 
of the evolution of the structures is well worth reproducing 
here, some five decades later: 

“The writer believes that the most satisfacto-
ry explanation of all these phenomena lies in the 
hypothesis that during an early period of deforma-
tion (possibly late Cretaceous or early Tertiary) a 
very sharp monocline developed along intersect-
ing trends from the south edge of Gray Mesa to 
the Ladrons. Both the eastern and western limbs 
of this flexure were very nearly horizontal and 

the intervening flank was nearly vertical or, local-
ly, slightly overturned towards the west. Possibly 
the flexure was the expression in the sediments of 
displacement along major crustal fractures emanat-
ing from below with the eastern block moving up. 
Penecontemporaneous fracturing of the steep flank 
and subsequent foundering of the east block pri-
marily along the same zone of weakness during a 
second period of deformation accounts not only for 
the presence of infaulted pre-Cambrian rocks, but 
also for the presence of the Permian. These stages 
in the structural history are illustrated (somewhat 
diagrammatically) in Plate X” (pg. 28-29).

GEOLOGIC SETTING
 
The Albuquerque Basin is situated within the heart of the 

Rio Grande rift in central New Mexico. The modern physiog-
raphy is controlled by deformation related to the Rio Grande 
rift that is superimposed upon earlier Laramide deformational 
events. Structurally, the basin is bounded on almost all sides by 
normal faults that separate Santa Fe Group basin fill from up-
lifted rift shoulders. Main uplifts that bound the Albuquerque 
Basin include the Sandia Mountains, the Manzano Mountains, 
the Los Pinos Mountains, the Sierra Ladrones, and the Lucero 
uplift. 

The Lucero uplift was described by Darton (1928) as a re-
gion of higher summits that create a plateau capped by basalt, 
where the eastern edge of the plateau is a sharp anticlinal ridge 
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that is cut by a fault along its eastern side. Subsequent work 
has refined this description (Kelley and Wood, 1946; Wright, 
1946; Duschatco, 1953; Callender and Zilinski, 1976; Rick-
etts and Karlstrom, 2014), although the basic observations re-
main relatively unchanged. Its boundary with the western edge 
of the Albuquerque Basin of the Rio Grande rift is a narrow 
(~500-m-wide) zone of faulted, steeply dipping Paleozoic and 
Mesozoic rocks that extends south to north approximately 60 
km from Ladron Peak to I-40. This zone of steeply dipping 
rocks, referred to here as the Carrizo deformation domain, sep-
arates flat-lying Permian and Triassic rocks of the relatively 
undeformed Colorado Plateau to the west from the Santa Fe rift 
fill of the Rio Grande rift to the east. Like many other uplifts in 
the region, the Lucero uplift records contractional deformation 
related to the Laramide orogeny that has been overprinted by 
extension during development of the Rio Grande rift (Callen-
der and Zilinski, 1976; Ricketts and Karlstrom, 2014). 

     CARRIZO ARROYO

Carrizo Arroyo is an east-west-trending tributary to the Rio 
Puerco with an approximately 183-m-deep canyon that has 
been cut by a (presently ephemeral) small stream that flows 
southeast across the boundary between the Colorado Plateau 
and the Albuquerque Basin. It exposes rocks ranging in age 
from Paleozoic to Quaternary (Fig. 1, see also Color Plates 8, 
9 ), and preserves a remarkable record of tectonic deformation 
and magmatism affecting the region as well as more recent in-
cision and landscape denudation. The primary structural ele-
ments in this region trend north-south and separate Paleozoic 
and Mesozoic rocks to the west from Cenozoic rocks to the 
east. 

Comanche Fault and Monocline System

The Comanche fault is a steeply west-dipping reverse fault 
that places mainly Pennsylvanian Atrasado and Bursum for-
mations in the hanging wall against Permian Abo and Yeso for-
mations in the footwall (Fig. 1, Callender and Zilinski, 1976; 
Ricketts and Karlstrom, 2014). This fault cores and cuts an 
east-facing monocline. Bedding attitudes along minor folds in 
Permian strata mimic the large-scale fold, and suggest a fold 
axis that plunges shallowly and trends NNE-SSW (Fig. 2). 
These orientations suggest an approximate east-west compres-
sion direction that can be attributed to deformation during the 
Laramide orogeny (Callender and Zilinski, 1976). Due to the 
general northward plunge of the monocline, as the Comanche 
fault is traced to the north, monoclinal displacement diminish-
es. Two kilometers north of Carrizo Arroyo the fault dies out 
within the Permian Yeso Formation in the core of the anticlinal 
hinge of a monocline, suggesting that the reverse fault-cored 
monocline is similar to many Colorado Plateau monoclines 
(e.g., Kelly, 1955; Davis and Bump, 2009).  

An alternative interpretation suggested that the apparent 
contraction associated with the Comanche fault zone was a re-
sult of isostatic rebound related to Rio Grande rifting (Lewis 
and Baldridge, 1994). However, we show here that the contrac-

tional features are cross cut by a 27.5 Ma igneous complex and 
later reactivated by rift-related extensional structures. Other 
interpretations suggest regionally significant Laramide strike-
slip deformation along this zone that accommodated northward 
translation of the Colorado Plateau microplate relative to the 
Great Plains (Karlstrom and Daniels, 1993; Chapin and Cather, 
1994). 

Intrusive Complex

One kilometers south of Carrizo Arroyo, a suite of igne-
ous rocks intrudes and disrupts Paleozoic strata (Fig. 1, Kelley 
and Wood, 1946; Wright, 1946; Callender and Zilinski, 1976; 
Ricketts and Karlstrom, 2014). This intrusive stock (Ti in Fig. 
1) generally lies along a north-south structural grain for a dis-
tance of approximately 3 km with a maximum width of 500 
m. Compositionally, these rocks consist of olivine gabbro, 
norite, quartz monzonite, microdiorite, and biotite-rich diorite 
(Callender and Zilinski, 1976), representing multiple stages 
of magmatism in the region. These rocks are in turn cut by a 
series of felsic dikes and small-offset faults. Where observed, 
small-offset (0.5- to 1-m offset) normal faults in the intrusion 
cut the latest stage of felsic dikes. A new biotite 40Ar/39Ar age 
of these intrusive rocks from the New Mexico Geochronology 
Research Laboratory at the New Mexico Bureau of Geology 
and Mineral Resources yields a plateau age of 27.5±0.04 Ma 
(Fig. 3), very similar to a previously reported whole-rock K-Ar 
age of 27.1±1.0 Ma (Callender and Zilinski, 1976). Numerous 
basaltic dikes are located surrounding Carrizo Arroyo that are 
assumed to be temporally related to the intrusion. These dikes 
are generally ~1-4 m in width and trend approximately north-
south or slightly northeast-southwest (Fig. 1). Inferred exten-
sion directions from these dikes indicate that by 27.5 Ma the 
regional stress field was dominated by approximately east-west 
extension.

 
Low-Angle Normal Faults

 
Carrizo Arroyo is a unique locality in the Rio Grande rift 

because it is one of the few locations that exposes low-angle 
faults associated with rifting. This fault system was originally 
interpreted to result from eastward Laramide thrusting, and lat-
er modified by relaxational normal faulting (Kelley and Wood, 
1946). Alternatively, Duschatco (1953, p. 23) suggested that this 
area is “one in which a unique series of lithologic, structural and 
geomorphic relations has combined to form conditions highly 
conducive to mass gravity (“landslip”) movements.” Callender 
and Zilinksi (1976) generally agreed with Duschatco (1953) and 
suggested that low-angle faults in this region are the result of 
gravity sliding due to unstable structural relief. One important 
conclusion of their work, however, is that low-angle faults are 
cut by the Laramide Comanche fault, making these faults some 
of the oldest in the region (Callender and Zilinski, 1976). 

Excellent exposures of the low-angle fault system can be 
found approximately 200 m south of Carrizo Arroyo (Fig. 1). 
At this location fault dips range from approximately 20-40° 
east, and the fault separates Permian Glorieta Formation in the 
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footwall from Permian San Andres Formation in the hanging 
wall, exhibiting a younger-on-older relationship. Recent map-
ping differs from the interpretation of Callender and Zilinski 
(1976) and does not show the Comanche fault offsetting the 
low-angle fault (Ricketts and Karlstrom, 2014). This fault, 
however, does appear to be truncated to the east by a north-
south-trending high-angle normal fault (Fig. 1C). Baldridge 
et al. (1984) suggested that this fault is a low-angle normal 
fault as opposed to a reverse fault or a gravity slide, and that it 
formed through ductility contrasts between stratigraphic units. 
In this region, the Glorieta Formation is a well-sorted medi-
um-grained sandstone. The overlying San Andres Formation 
consists of multiple lithologies, including nonfossiliferous 
limestone, shale, and thick layers of gypsum, argillaceous gyp-
sum, and gypsiferous shale. Thus, these weak gypsum layers 
could allow for the development of faults that are misaligned 
with the regional stress field and could explain the anomalous-
ly low angle of these structures. 

 
Santa Fe Fault

Compressional deformation has since been overprinted by 
extensional deformation related to development of the Rio 
Grande rift. The main rift-bounding structure is the east-dip-
ping Santa Fe fault (Fig. 1), which offsets the steep limb of the 
Laramide monocline. The Santa Fe fault places Paleozoic and 
Mesozoic rocks in the footwall against the Miocene Popoto-
sa Formation of the Santa Fe Group. Based on seismic data, 
the Santa Fe fault in deeper parts of the basin displays more 
than 3050 m of throw (Russell and Snelson, 1994). However, 
decrease in slip upwards and an overall growth fault geom-
etry for the Santa Fe fault is likely. Bedding attitudes within 
the Popotosa Formation in the immediate hanging wall of the 
Santa Fe fault define a fault-parallel syncline with a ~500-m- 
east-west wavelength that extends at least 10 km from south 
to north (Ricketts and Karlstrom, 2014). This structure is in-
terpreted to be a drag fold associated with continued post-Po-
potosa movement along the Santa Fe fault. The syncline can 
be seen at Bobo Butte immediately north of Carrizo Arroyo. 
Bobo Butte is a mesa that stands approximately 130 m above 
the modern Carrizo Arroyo and consists of folded Popotosa 
Formation that is overlain by horizontal Quaternary travertine 
deposits (Kolomaznik et al., 2013). 

In the footwall of the Santa Fe fault, numerous small-offset 
normal faults cut Pennsylvanian, Permian, and Triassic strata. 
North of Carrizo Arroyo, these faults are both antithetic and 
synthetic to the Santa Fe fault and most can only be traced for 
several hundred meters. Immediately south of Carrizo Arroyo, 
the Carrizo fault places Permian Glorieta Formation against 
Permian San Andres Formation and dips shallower than 40° 
east (Callender and Zilinksi, 1976). To the south, this fault cuts 
a late Oligocene intrusive complex. Although total offset along 
the Carrizo fault is relatively minor and probably not more than 
several hundred meters at most, this structure is unique because 
it is only one of several known low-angle normal faults in the 
Albuquerque Basin.

Exhumation of Lucero Uplift
 
Both the Laramide orogeny and development of the Rio 

Grande rift have contributed to exhumation of flanks that bound 
the Albuquerque Basin. The Albuquerque Basin is bounded on 
almost all sides by normal faults, and growth of the basin has 
resulted in the development of multiple sub-basins. The north-
ern Albuquerque sub-basin is an east-tilted half-graben filled 
with east-dipping Santa Fe Group deposits. These sediments 
dip towards west-dipping normal faults that bound the western 
edge of the Sandia uplift (May et al., 1994; Russell and Snelson, 
1994; Grauch and Connell, 2013; Ricketts et al., 2015a). In con-
trast, the southern Belen sub-basin is a more complex region, 
but Santa Fe Group deposits generally dip towards the western 
edge of the basin (Grauch and Connell, 2013). In this region, the 
Ladron uplift is bounded along its eastern edge by the low-an-
gle Jeter fault (Black, 1964; Lewis and Baldridge, 1994; Read 
et al., 2007; Ricketts et al., 2015a). The accommodation zone 
separating the two sub-basins has traditionally been interpreted 
as a narrow fault zone that is a continuation of the NE-trending 
Tijeras fault exposed along the southern margin of the Sandia 
uplift. However, a synthesis of diverse geophysical datasets do 
not directly image such a structure (Grauch, 2001; Grauch and 
Connell, 2013). Instead, Grauch and Connell (2013) suggest 
that this accommodation zone consists of a broad zone of north- 
and northwest-trending anticlinal structures that serve to relay 
displacement from one rift margin to the other. In this model, 
the Sandia and Ladron uplifts represent the active margins of 
the basin where the majority of slip has accumulated. 

Apatite fission-track and apatite (U-Th)/He thermochrono-
logic data have been combined for most rift flanks surrounding 
the Albuquerque Basin (Kelley et al., 1992; House et al., 2003; 
Ricketts et al., 2015b). Thermal history models derived from 
these data suggest that the Sandia and Ladron uplifts were ex-
humed at ca. 22-13 Ma and ca. 18-10 Ma, respectively, where-
as the Manzano uplift preserves more complex cooling reflect-
ing Laramide contraction followed by extensional exhumation 
during development of the Rio Grande rift (House et al., 2003; 
Ricketts et al., 2015b). No apatite fission-track data exist for 
the Lucero uplift, but 11 single-grain apatite (U-Th)/He ages 
were obtained from three samples in this region to document 
its low-temperature cooling history and compare it to sur-
rounding rift flank uplifts (Ricketts et al., 2015b). These ages 
cluster within a narrow range from 9.0±0.3 Ma to 22.5±1.0 
Ma, and thermal history models of these data, although not 
very well constrained due to the lack of accompanying apa-
tite fission-track data, suggest exhumation of the Lucero uplift 
from ca. 25-15 Ma (Ricketts et al., 2015b). The times of exhu-
mation are very similar to the times of exhumation document-
ed in the Sandia and Ladron uplifts, and suggest that the entire 
western flank of the Albuquerque Basin was exhumed during 
growth of the Rio Grande rift, rather than during the Laramide 
orogeny. These observations also support the interpretation by 
Grauch and Connell (2013) that the Tijeras accommodation 
does not extend across the entire Albuquerque Basin. Rather, 
exhumation of the Lucero uplift was apparently primarily ac-
complished through slip along the east-dipping Santa Fe fault. 
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FIGURE 1. A) Geologic map of the western edge of the Lucero uplift at Carrizo Arroyo. Modified from Ricketts and Karlstrom (2014), including B) Explanation of 
map units and symbols and C) Cross-sections. The color versions of these figures are in Color Plates 8 and 9.
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Pliocene and Younger Incision of Carrizo Arroyo

Recent and ongoing incision of the Lucero uplift is best 
preserved by multiple basalt flows as well as remarkable 
large-volume travertine deposits and travertine-cemented grav-
els (Callender and Zilinski, 1976; Lozinski and Tedford, 1991; 
Kolomaznik et al., 2013; Priewisch et al., 2014; Ricketts and 
Karlstrom, 2014). At the highest elevations, the Mesa Carrizo 
basalt flow caps Permian Abo and Yeso formations (Fig. 1). 
This basalt flow has a K-Ar age of 3.7±0.4 Ma (Bachman and 
Mehnert, 1978) and is deeply incised by Carrizo Arroyo. At 
lower elevations, inactive and perched travertine deposits and 
travertine-cemented gravels are preferentially located along 
the Comanche and Santa Fe fault systems, and extend the en-
tire north-south length of the Lucero uplift (Ricketts and Karl-
strom, 2014). In many locations active springs are currently 
precipitating travertine in arroyo bottoms, forming coatings on 
vegetation and sometimes resulting in spring mounds and trav-
ertine platforms. The more vigorous springs are also currently 
precipitating travertine that mantles the modern topography. 

Ricketts and Karlstrom (2014) map at 
least four terraces at different elevations 
above arroyo bottoms, including active-
ly-precipitating travertine.

 At Carrizo Arroyo, a total of three 
abandoned terraces have been identified, 
together with the higher-elevation Mesa 
Carrizo basalt flow (Kolomaznik et al., 
2013; Ricketts and Karlstrom, 2014). 
Using the age and height of the Mesa 
Carrizo basalt flow, Carrizo Arroyo in-
cised at an average long-term rate of 50 
m/my since 3.7 Ma (Kolomaznik et al., 
2013; Channer et al., 2015). Perched ter-
race deposits offer an opportunity to in-
vestigate the more recent incision rates 
through time at Carrizo Arroyo because 
they are situated at lower elevations and 
are younger than the Mesa Carrizo basalt 
flow. Abandoned terraces consist of Car-
rizo Arroyo river gravels that are made 
up of pebble- to cobble-sized clasts of 
sandstone and limestone that are locally 
derived from the adjacent Pennsylva-
nian and Permian bedrock units. Terrac-
es also contain travertine as both flow-
stone and gravel-coating cement.

Travertine was collected from each 
of the three perched terraces and dated 
using U-series methods and model ages 
(Bourdon et al., 2003; Kolomaznik et 
al., 2013). Qt1 at the lowest elevation 
yields a U-series age of 3±0.02 ka. Two 
U-series ages from Qt2 at intermediate 
elevations range from 169±0.9 ka to 
179±1.2 ka. At the highest elevation, 
Qt3 is outside of the upper limit of U-se-

ries geochronology, but model ages suggest it was deposited at 
930±440 ka (Kolomaznik et al., 2013). These data, combined 
with the terrace heights above the modern Carrizo Arroyo, 
suggest that incision rates dramatically increased from 19 m/
my to 150 m/my at about 1 Ma (Kolomaznik et al., 2013). 
This change mimics increased incision rates in the nearby Rio 
Puerco (Love and Connell, 2005), suggesting that it likely re-
sulted from a regional process. Possible processes to explain 
this trend vary widely, but include climatic changes (Molnar, 
2004; Connell et al., 2005), surface uplift due to Quaternary 
volcanism and mantle-driven uplift (Fialko and Simons, 2001; 
Dunbar, 2005; Nereson et al., 2013; Channer et al., 2015), and 
integration of the Rio Grande system through the Albuquerque 
Basin (Connell et al., 2005). 

TRAVERTINE QUARRIES

Some of the largest travertine mounds exposed within the 
Lucero uplift are currently being quarried by New Mexico 
Travertine, Inc., providing a spectacular display of their in-
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FIGURE 2. Lower-hemisphere equal-area stereographic projections displaying poles to bedding planes 
within the Permian Yeso Formation. These bedding measurements are from four small-scale (several meter) 
folds near the Comanche fault. The calculated best-fit great circle girdle to the data is plotted as a solid black 
line, and the inferred fold axis is shown by the square. Plots are from Stereonet 9 software.
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ternal structure (Fig. 4). These quarry sites are located within 
the southern region of the Lucero uplift, approximately 10 km 
south of Carrizo Arroyo. Tectonically, this area is analogous to 
Carrizo Arroyo and the northern portions of the Lucero uplift. 
Contractional deformation is expressed by a series of approx-
imately north-south-trending reverse faults and folds in Penn-
sylvanian and Permian rocks (Fig. 4). The most prominent con-
tractional structure is the west-dipping Comanche fault, which 
places Pennsylvanian rocks in the hanging wall against Perm-
ian rocks in the footwall. This region, too, has been further 
modified by extensional stresses during development of the Rio 
Grande rift, which is best expressed through the east-dipping 
Santa Fe fault, which separates Rio Grande rift fill to the east 
from Permian rocks to the west (Callender and Zilinski, 1976; 
Ricketts et al., 2014). Travertine deposits are preferentially lo-
cated within the narrow zone of deformation defined by the 
Comanche-Santa Fe fault systems. In contrast to the northern 
Lucero uplift, the travertine quarries offer a rare opportunity to 
investigate young deformation in the Rio Grande rift because 
they expose numerous sets of extensional calcite-filled veins 
that cross-cut the horizontal bedding of the travertine.

At the quarry sites Temple Cream, Scheherazade, and Vis-
ta Grande, exposed quarry faces reveal abundant extensional 
veins that cross-cut the horizontal bedding of the travertine. 
The majority of these veins range from ~1 mm to 10-20 cm 
in width (Ricketts et al., 2014). To the north, Permian Yeso 
Formation is capped by travertine deposits at Red Hill. At this 
location, Yeso Formation is cut by calcite-filled extensional 
veins as well as small-offset normal faults that contain minor 
amounts of calcite along the slip plane. A final location, Co-
manche, preserves calcite-filled extensional veins, although 
these veins cut pebble-to-cobble conglomerate rather than trav-
ertine deposits. Together, these five sites offer an opportunity 

to investigate young deformation in the central Rio Grande rift 
that is not preserved elsewhere. 

Vein and Fault Orientations
 
At each of the three quarry sites (Temple Cream, Schehe-

razade, and Vista Grande), veins can be grouped into three or-
thogonal, mutually cross-cutting sets (Fig. 4), indicating that all 
vein sets essentially formed contemporaneously. Veins are use-
ful as extension direction indicators because extension is per-
pendicular to the vein walls. While the three vein sets at each of 
these locations suggest three orthogonal extension directions, 
the majority of veins belong to a single set, indicating predom-
inant extension directions of 091° at Temple Cream, 101° at 
Scheherazade, and 136° at Vista Grande (Ricketts et al., 2014). 

In contrast, veins cutting Permian Yeso Formation and 
overlying travertine deposits at Red Hill are very consistent, 
indicating a single extension direction of 116°. Red Hill is 
also unique because it is the only study site that is also cut 
by small-offset conjugate normal faults. These faults together 
suggest an extension direction of 120°, essentially identical to 
the results from extensional veins (Fig. 4, Ricketts et al., 2014). 

At Comanche, Santa Fe Group rift-fill deposits are cut by 
a single set of calcite-filled extensional veins. This location is 
unique because the veins, and sedimentary deposits that en-
close them, have been tilted from their original orientation. 
This tilting is most likely due to recent slip along the Santa 
Fe fault because mapped synclines and anticlines in the Santa 
Fe Group are parallel to the trace of the fault. When Santa Fe 
Group deposits are restored back to horizontal, calcite-filled 
extensional veins indicate a single extension direction of 116°, 
consistent with extension directions obtained from extensional 
veins and normal faults at Red Hill (Fig. 4). 

Vein Ages
 
Along the western margin of the Albuquerque Basin, several 

authors have noted that travertine platforms are likely Pleisto-
cene and younger (Kelley, 1977) and waters have been moving 
through fault zones in this region for the past 2 Ma (Callender 
and Zilinski, 1976). The abundance of travertine and calcite in 
faults and fractures provides a unique and powerful method for 
further constraining the times of extensional activity at each 
of the study sites because times of calcite precipitation can be 
accurately calculated using U-series dating and model ages. 
U-series dating has an upper age limit of ~500,000-700,000 
years. For samples that are older than this, geochemical anal-
ysis of each sample can be used to calculate model ages, with 
an upper limit of~1.5 Ma (Bourdon et al., 2003; Ricketts et al., 
2014). Therefore, if Callender and Zilinksi (1976) are correct, 
most of the travertine and calcite in the study region should be 
dateable using U-series methods and model ages. 

Out of 12 samples of calcite that were collected from exten-
sional veins for U-series dating, four yielded robust U-series 
ages, six samples were outside of U-series range but yielded 
model ages, and two samples were older than the upper limit 
of U-series model ages (older than ~1.5 Ma, Ricketts et al., 

JR-11-mm-2 biotite

0

40

80

1

10

100

0 10 20 30 40 50 60 70 80 90 100

16

18

20

22

24

26

28

30

32

34

D

E

F

G H I J K L

Integrated Age = 26.98 ± 0.10 Ma

 27.51 ± 0.04 Ma (MSWD = 2.02)

Data at 2-sigma, results at 1-sigma

Cumulative %39Ar Released

%
40

Ar
*

K/
C

a

Ap
pa

re
nt

 a
ge

 (M
a)

FIGURE 3. Biotite age spectra from the intrusion south of Carrizo Arroyo. 
Also included is K/Ca and radiogenic yield (%40Ar*). Errors are reported at 2σ.



Ricketts and kaRlstRom192

2014), consistent with the observations of Kelley (1977) and 
Callender and Zilinski (1976). U-series dating and model ages 
of 12 samples suggest that calcite precipitation at these study 
sites occurred episodically from ca. 250 ka to 2 Ma. 

Strain Rates

The relatively consistent extension directions indicated by 
veins and faults at five separate locations along the western 
margin of the Albuquerque Basin suggest that vein and fault 
formation are responses to the regional tectonic stress field 
controlling development of the Rio Grande rift. Further, the 
timing constraints on calcite precipitation from U-series dat-
ing and model ages reveal that much of the preserved fluid 
flow and tectonism is Quaternary in age (Ricketts et al., 2014). 
These deposits, therefore, offer rare insight into the young de-

formational history of the Rio Grande rift and 
the complex interaction between tectonism 
and fluid flow in the upper and lower crust. 

Strain rates were calculated at each quarry 
site in an effort to compare them to region-
al strain rates in the Rio Grande rift. Strain 
was calculated by measuring the total lengths 
of quarry faces and comparing them to the 
original lengths by subtracting the combined 
widths of extensional veins. To convert these 
strain values to strain rates, a maximum 
travertine mound age of 2 Ma was assumed. 
Ricketts et al. (2014) found that calculated 
strain rates at each of the quarry sites during 
the last 2 Ma are one to two orders of magni-
tude larger than the present-day strain rates 
as measured by GPS (Berglund et al., 2012). 
The anomalously high strain rates at this lo-
cation coupled with the high volumes of fluid 
in the upper crust to precipitate the travertine 
deposits suggests a genetic link. Elevated flu-
id pressures alter the regional tectonic stress 
field by reducing the normal stress (Hubbert 
and Rubey, 1959). At the travertine quarries, 
fluid flow associated with spring deposits re-
duced the normal stress during the Quaternary 
and amplified the development of fractures. 
In this model, the orientation of the fractures 
is due to the orientation of the regional stress 
field, but the quantity of fractures is due to 
elevated fluid pressures in the upper crust 
during the last 2 Ma along the western edge 
of the Albuquerque Basin. 

Nature of Fluids
 
Geochemical tracers of spring waters in 

the Rio Grande rift indicate that they are a 
mix of predominantly meteoric and river wa-
ter with minor amounts of deeply derived en-
dogenic fluids (Newell et al., 2005; Williams 

et al., 2013). In the Lucero uplift, main faults such as the Co-
manche and Santa Fe faults penetrate into Precambrian rocks, 
and can thus potentially provide pathways for endogenic fluids 
to reach the surface. These endogenic fluids are preserved in 
active springs in Arroyo Salado, for example, which contain 
3He values that indicate ~7.6% mantle-derived helium (Wil-
liams et al., 2013). Therefore, these deeply-derived fluids offer 
insight into possible connections between rifting and fluid mi-
gration through the upper crust from deep levels. 

One intriguing possible source of deeply derived fluids is 
from underlying magma bodies. The Socorro magma body is a 
thin midcrustal magma body located 19 km deep beneath cen-
tral New Mexico (Sanford et al., 1973; Reinhart and Sanford, 
1981; Balch et al., 1997). Observed heat-flow data at the sur-
face above the Socorro magma body suggest that melts heating 
the crust have been present in the region for the past 1 Ma, and 

FIGURE 4. Geologic map of the travertine quarries along the western edge of the Albuquerque 
Basin. Stereographic projections show poles to extensional veins and fault planes (at Red Hill). Ar-
rows show inferred extension direction from stereonet data. Modified from Ricketts et al. (2014).
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possibly longer (Reiter et al., 2010), overlapping with the time 
deposition of large-volume travertine deposits and the devel-
opment of extensional veins. These observations suggest that 
fluids derived from midcrustal magma bodies may have been 
transported to the surface through high-porosity fault zones, 
where they mixed with shallow waters and were ejected in nat-
ural springs, where they precipitated travertine deposits and 
developed the cross-cutting vein networks displayed within 
the quarry sites. 

CONCLUSIONS

The Lucero uplift offers an exceptional opportunity to ex-
amine the various tectonic and magmatic processes that have 
affected central New Mexico throughout the Cenozoic. This 
paper by no means represents a complete understanding of 
the complex interactions between various processes, nor is it 
meant to be an exhaustive overview of previous work in the 
region. Instead, this paper highlights recent work on the main 
tectonic and magmatic events in the region in an effort to en-
courage future research. The main conclusions of this summa-
ry paper are: (1) The Lucero uplift records deformation related 
to multiple tectonic events, including the Laramide orogeny 
and development of the Rio Grande rift, (2) a suite of dikes 
and sill-like intrusions cross-cut Paleozoic strata at 27.5 Ma, 
and may represent magmatism related to the ignimbrite flare-
up emplaced within an overall extensional environment, (3) 
exhumation of the Lucero uplift was primarily accomplished 
from 25-15 Ma based on apatite (U-Th)/ thermochronology, 
(4) extensional veins in travertine deposits record a period of 
rapid extension in the central Rio Grande rift from 2 Ma to 
Recent that is possibly attributed to high pore fluid pressures 
and involving a mixture of shallow fluids combined with mi-
nor amounts of deeply-derived fluids from underlying magma 
bodies, and (5) incision rates of the Lucero uplift dramatically 
increased at approximately 1 Ma from 19 m/Ma to 150 m/Ma.
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